CONTINUITY OF FUNCTIONS

DEFINITION OF CONTINUITY AT A POINT

Let $f: D \to \mathbb{R}$ be a function, where $D \subseteq \mathbb{R}$, and let $x_0 \in D$.

- If x₀ is an accumulation point of D, then f is said to be continuous at x₀ if lim_{x→x₀} f(x) = f(x₀).
 This means that:
 - 1. both the left-hand limit and the right-hand limit of f at x_0 exist and are finite:

$$\lim_{x \to x_0^-} f(x) = l_1 \in \mathbb{R} \qquad \wedge \qquad \lim_{x \to x_0^+} f(x) = l_2 \in \mathbb{R}$$

2.
$$l_1 = l_2 = \lim_{x \to x_0} f(x) = l$$

$$3. \quad f(x_0) = l.$$

• If x_0 is an isolated point of D, then f is said to be continuous at x_0 by definition.

DISCONTINUITY POINTS

Let $f: D \to \mathbb{R}$ be a function, where $D \subseteq \mathbb{R}$, and let x_0 be an accumulation point of D. x_0 is said to be a **discontinuity (point)** of f if either:

- $x_0 \in D$, but f is not continuous at x_0 , or
- $x_0 \notin D$ (i.e. f is not defined at x_0).

CLASSIFICATION OF DISCONTINUITY POINTS

I. x_0 is called a **discontinuity of the first kind**, or a **jump discontinuity**, or a **step discontinuity**, if:

both the left-hand limit and the right-hand limits of f at x_0 exist and are finite:

$$\lim_{x \to x_0^-} f(x) = l_1 \in \mathbb{R} \qquad \land \qquad \lim_{x \to x_0^+} f(x) = l_2 \in \mathbb{R}$$

but $l_1 \neq l_2$.

The number $s = |l_2 - l_1|$ is called the **jump size** of f at x_0 .

Example

Consider the function $f(x) = \begin{cases} x+1, & se \ x \ge 0 \\ x-1, & se \ x < 0 \end{cases}$.

It is defined
$$\forall x \in \mathbf{R}$$
.

At $x_0 = 0$, in which it assumes the value f(0) = 1, we have:

$$\lim_{x \to 0^-} f(x) = -1$$
 and $\lim_{x \to 0^+} f(x) = 1$.

Therefore $x_0 = 0$ is a discontinuity point of the first kind, with jump size s = 2.

II. x_0 is called a **discontinuity of the second kind,** or an **essential discontinuity**, if:

either the left-hand limit or the right-hand limit of f at x_0 does not exist or is infinite.

Example 1

Consider the function $f(x) = \frac{x}{x+1}$.

It is defined $\forall x \neq -1$, so it has a discontinuity at $x_0 = -1$. Since

 $\lim_{x \to -1^-} f(x) = +\infty \quad \text{and} \quad \lim_{x \to -1^+} f(x) = -\infty,$

 $x_0 = -1$ is a discontinuity point of the second kind.

The line x = -1 is a vertical asymptote of the graph of f as well.

Example 2

Consider the function $f(x) = \sin \frac{1}{x}$.

It is defined $\forall x \neq 0$, so it has a discontinuity at $x_0 = 0$.

Because $\lim_{x\to 0} f(x)$ does not exist,

 $x_0 = 0$ is a discontinuity point of the second kind.

III. x_0 is called a **discontinuity of the third kind,** or a **removable discontinuity**, if:

there exists $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$, but either f is not defined at x_0 or $f(x_0) \neq l$.

Example

Consider the function $f(x) = \frac{x^2 - 1}{x - 1}$.

It is defined $\forall x \neq 1$, so it has a discontinuity at $x_0 = 1$. Observe that, $\forall x \neq 1$,

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{(x - 1)} = x + 1.$$

Therefore

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 2$

and $x_0 = 1$ is a discontinuity point of the third kind.

Note that in the graph of f there is a "hole" at $x_0 = 1$, so it's a line from which a point has been removed.

