Two Theorems from Geometry

1t is the glory of geometry that from so few principles,
fetched from without, it is able to accomplish so much.

—Sir Isaac Newton, preface to the Principia

Proposition 20 of Book III of Euclid’s Elements says:

In a circle the angle at the center is double of the angle at the
circumference, when the angles have the same circumference as base.!

In more common language, the proposition says that an angle
inscribed in a circle (that is, an angle whose vertex lies on the cir-
cumference) is equal to half the central angle that subtends the
same chord (fig. 28). Two corollaries from this theorem immedi-
ately follow: (1) In a given circle, all inscribed angles subtending
the same chord are equal (this is Proposition 21 of Euclid; see
fig. 29); and (2) All inscribed angles subtending the diameter
are right angles (fig. 30). This last result is said to have been
proved by Thales (although the Babylonians had already known
it a thousand years before him) and may be one of the earliest
theorems ever to have been proved.

This simple theorem, with its two corollaries, is a treasure
trove of trigonometric information, and we will have numer-
ous occasions to use it throughout this book. Let us use it here
to prove the Law of Sines. Figure 31 shows a triangle ABC
inscribed in a circle with center at O and radius r. We have
[{AOB = 2/ ACB = 2vy. Drop the perpendicular bisector from
O to AB. Then siny = (¢/2)/r, hence ¢/siny = 2r = constant.
Since the ratio ¢/sinvy is constant (i.e., has the same value re-
gardless of ¢ and vy), we have

a_,B_c

sina  sinB  siny

o)

Not only is this proof a model of simplicity, it also gives the sine
law in its complete form; the more common proof, based on
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Fi1G. 31. The Law of Sines:
the acute case.

dissecting a triangle into two right triangles, entirely ignores the
statement about 2r.

In figure 31 the angle vy is acute, which means that the cen-
ter of the circle lies inside the triangle. If vy is obtuse (fig. 32),
the center lies outside, so that arc AB is greater than half the
circumference. Thus the internal angle of triangle AOB at O is
v = 360° — 2. Again drop the perpendicular bisector from O to
AB: we have siny'/2 = (¢/2)/r. But siny’'/2 = sin (180° — y) =
sin y, sO we again get ¢/siny = 2r, as before.

We can get still more information out of our theorem. Fig-
ure 33 shows the unit circle and a point P on it. Let the an-
gle between OP and the positive x-axis be 26. Then /ORP = 6,
where R is the point with coordinates (—1, 0). Applying the sine
law to the triangle ORP, we have RP/ sin (180° —26) = OP/ sin 6.
But sin (180° — 20) = sin26 and OP = 1, so RP/sin26 = 1/sin 6,

C
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F1G. 32. The Law of Sines:
the obtuse case.
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from which we get
sin26 = RPsin 6. 2)

Now drop the perpendicular bisector OS from O to RP; in the
right triangle ORS we have cos§ = RS/RO = (RP/2)/RO =
RP/2, hence RP = 2cos 6. Substituting this back in equation
(2), we get

sin26 = 2sin 6 cos 0, 3)

which is the double-angle formula for the sine. Again, dropping
the perpendicular PQ from P to the x-axis, we have

c0s20 =0Q = RQ — RO =RPcos6—1

“4)
=(2cosf)-cosf —1=2cos*6—1,

which is the double-angle formula for the cosine. Finally, hav-
ing proved the double-angle formulas, we can derive the corre-
sponding half-angle formulas by simply replacing 26 by ¢.

Let us return for a moment to our proof of the Law of Sines.
Since any three noncollinear points determine a circle uniquely,
every triangle can be inscribed in exactly one circle. Indeed, we
may regard the angles of the triangle as inscribed angles and the
sides as chords in that circle. Thus the Law of Sines is really a
theorem about circles. If we let the diameter of the inscribing
circle be 1 and call this circle the “unit circle,” then the Law of
Sines simply says that

a=sina,b=sinB,c=sinvy,

that is, each side of a triangle inscribed in a unit circle is equal to
the sine of the opposite angle (fig. 34). We could, in fact, define
the sine of an angle as the length of the chord it subtends in the
unit circle, and this definition would be as good as the traditional
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Fi1G. 34. The Law of Sines in a
“unit circle.”

definition of the sine as a ratio of two sides in a right triangle.
(It would, in fact, have the advantage that the angle could vary
from 0° to 180°—twice the range in a right triangle.) As we saw
in chapter 2, it was this interpretation of the sine function that
Ptolemy used in his table of chords.

¢ & ¢

In Ptolemy’s Almagest we find the following proposition, known
as Ptolemy’s Theorem:?

The rectangle contained by the diagonals of any quadrilateral inscribed
in a circle is equal to the sum of the rectangles contained by the pairs
of opposite sides.?

What is the meaning of this cryptic statement? To begin with,
the Greeks interpreted a number as the length of a line seg-
ment, and the product of two numbers as the area of a rectan-
gle with sides having the given numbers as lengths. Thus “the
rectangle contained by the diagonals” means the area of a rect-
angle whose sides are the diagonals of an inscribed quadrilat-
eral, with a similar interpretation for “the rectangles contained
by the pairs of opposite sides.” In short, “a rectangle contained
by” simply means “a product of.” Ptolemy’s Theorem can then
be formulated as follows: In a quadrilateral inscribed in a circle,
the product of the diagonals is equal to the sum of the products of
the opposite sides. Referring to figure 35, this means that

AC-BD = AB-CD + BC - DA. (5)

As this theorem is not as widely known as others in elemen-
tary geometry, we give here Ptolemy’s proof: Using one side,
say AB, as the initial side, we construct an angle ABE equal
to DBC. Now angles CAB and CDB are also equal, having the
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F1G. 35. Ptolemy’s Theorem.

common chord BC. Therefore, triangles ABE and DBC are sim-
ilar, having two pairs of equal angles. Hence AE/AB = DC/DB,
from which we get

AE -DB = AB - DC. (6)

If we now add the angle EBD to both sides of the equation
L{ABE = /DBC, we get LABD = (EBC. But angles BDA and
BCE are also equal, having the common chord A4B. Therefore,
triangles ABD and EBC are similar, hence AD/DB = EC/CB
and thus

EC-DB = AD - CB. (7)

Finally, adding equations (6) and (7), we have (AE + EC)- DB =
AB-DC + AD - CB; replacing AE + EC by AC, we get the re-
quired result (note that the sides are nondirected line segments,
so that BD = DB, etc.).

If we let the quadrilateral ABCD be a rectangle (fig. 36), then
all four vertices form right angles, and furthermore AB = CD,
BC = DA, and AC = BD. Equation (5) then says that

(AC)Y* = (AB)* + (BCY, ®)

which is the Pythagorean Theorem! This demonstration of the
most celebrated theorem of mathematics appears as number
66 of 256 proofs in Elisha Scott Loomis’s classic book, The
Pythagorean Proposition.*

What is the trigonometric significance of Ptolemy’s Theorem?
For the special case where ABCD is a rectangle, AC is a diam-
eter in our “unit circle,” hence AC = 1. Moreover, denoting
angle BAC by a, we have AB = cos a, BC = sin a. Equation (8)
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FI1G. 36. The Pythagorean
Theorem.

thus becomes
1 =cos®a +sin’ a,

which is the trigonometric equivalent of the Pythagorean The-
orem. But there is more in store. Let ABCD be any quadrilat-
eral in which one diagonal, say AC, coincides with the diameter
(fig. 37). Then £ABC and LADC are right angles. Let /BAC =
a, LCAD = B. We then have BC = sina, AB = cosa, CD =
sin B, AD = cos 8, and BD = sin(«a + B), so that by Ptolemy’s
Theorem,

1-sin(a+ B) =sina - cos B + cos« - sin 3,

which is the addition formula for the sine function! (The differ-
ence formula sin (« — 8) = sin« - cos B — cos « - sin 3 can likewise
be obtained by considering a quadrilateral in which one side,
say AD, coincides with the diameter; see fig. 38.) Thus what is
perhaps the single most important formula in trigonometry was

Fi1G. 37. Geometric
proof of sin(a + B) =
sin @ cos B + cos asin B.
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F1G. 38. Geometric
proof of sin(a — B) =
sin a cos B — cos a sin 3.

already known to Ptolemy, who used it to great effect in calcu-
lating his table of chords; and quite possibly it was discovered
already by Hipparchus two and a half centuries earlier. The old
adage is still true: “Nothing is new under the sun.”
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