THE DERIVATIVE

Fabio Cipollone
Liceo Classico "Gabriele D'Annunzio"- Pescara

First lesson
the definition of the derivative

DEFINITION OF DERIVATIVE

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function, $x_{0} \in(a, b)$.
f is said to be differentiable at x_{0} if the limit:

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists and is finite.
Such limit, provided it exists and is finite, is called the derivative of f at x_{0} and is denoted by $f^{\prime}\left(x_{0}\right)$:

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Note. If we pose $x=x_{0}+h$, we can also write

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} .
$$

GEOMETRIC INTERPRETATION

The ratio $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ is called the difference quotient of f at x_{0}.

The difference quotient of f at x_{0} represents the gradient (or slope) m_{s} of the secant line to the graph of f through $P\left(x_{0}, f\left(x_{0}\right)\right)$ and a point $Q\left(x_{0}+h, f\left(x_{0}+h\right)\right)$.

As x approaches x_{0}, the secant line through P and Q tends to the tangent line at P and the difference quotient $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ tends by definition to the derivative $f^{\prime}\left(x_{0}\right)$, which therefore represents the gradient m_{t} of the tangent line to the graph of f at $P\left(x_{0}, f\left(x_{0}\right)\right)$.

Interactive exercise: the difference quotient

ONE-SIDED DERIVATIVES

- The limit

$$
\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided it exists, is called the right-hand derivative of f at x_{0} and is denoted by $f^{\prime}{ }_{+}\left(x_{0}\right)$.

- In the same way, the limit

$$
\lim _{h \rightarrow 0^{-}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided it exists, is called the left-hand derivative of f at x_{0} and is denoted by $f^{\prime} _\left(x_{0}\right)$.

- A function is differentiable at x_{0} if both right-hand and left-hand derivatives at x_{0} exist, are finite and are equal.

THE DERIVATIVE AS A FUNCTION

A function $f(x)$ is said to be differentiable on a closed interval [a, b] if

- it is differentiable at every interior point of the interval, and
- there exist the right-hand derivative at the left endpoint a and the left-hand derivative at the right endpoint b and they are both finite.

In that case, we can consider the function $f^{\prime}:(a, b) \rightarrow \mathbb{R}$, which assigns, to each $x \in(a, b)$, the derivative $f^{\prime}(x)$ of f at x. This function is written $f^{\prime}(x)$ and is called the derivative function or the derivative of f.

NOTATION

There are many ways to denote the derivative of a function $y=f(x)$. Beside $f^{\prime}(x)$, the most common are:

f^{\prime}	$" f$ prime"	Nice and brief, but don't name the indipendent variable.		
y^{\prime}	" y prime"			
$\frac{d y}{d x}$	"dydx" or "the derivative of y with respect to x "	Name both variables and uses d for derivative.		
$\frac{d f}{d x}$	"dfdx" or "the derivative of f with respect to x "			Emphasize the idea that
:---				

Second lesson

CALCULATING DERIVATIVES (I)

THE DERIVATIVE OF A CONSTANT FUNCTION AND OF THE IDENTITY FUNCTION

- Constant function (constant rule)

$$
y=k \quad(k \in \mathbb{R}) \quad \Rightarrow \quad y^{\prime}=0
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{k-k}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0$

- Identity function

$$
y=x \quad \Rightarrow \quad y^{\prime}=1
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$

THE DERIVATIVE OF A POWER FUNCTION (POWER RULE)

- Positive integer power function

$$
y=x^{n} \quad(n \in \mathbb{N} \wedge n>1) \quad \Rightarrow \quad y^{\prime}=n x^{n-1}
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=\lim _{h \rightarrow 0} \frac{\left[x\left(1+\frac{h}{x}\right)\right]^{n}-x^{n}}{h}=\lim _{h \rightarrow 0} \frac{x^{n}\left(1+\frac{h}{x}\right)^{n}-x^{n}}{h}=$
$=\lim _{h \rightarrow 0} \frac{x^{n}\left[\left(1+\frac{h}{x}\right)^{n}-1\right]}{h}=\lim _{h \rightarrow 0} \frac{x^{n-1}\left[\left(1+\frac{h}{x}\right)^{n}-1\right]}{\frac{h}{x}}=x^{n-1} \lim _{h \rightarrow 0} \frac{\left[\left(1+\frac{h}{x}\right)^{n}-1\right]}{\frac{h}{x}}=x^{n-1} \cdot n=n x^{n-1}$

- Real power function

$$
y=x^{\alpha} \quad(\alpha \in \mathbb{R}) \quad \Rightarrow \quad y^{\prime}=\alpha x^{\alpha-1}
$$

THE DERIVATIVE OF A POWER FUNCTION (POWER RULE)

- Special cases

$$
\begin{array}{clc}
y=x^{2} & \Rightarrow & y^{\prime}=2 x \\
y=\frac{1}{x}=x^{-1} & \Rightarrow & y^{\prime}=-x^{-2}=-\frac{1}{x^{2}} \\
y=\sqrt{x}=x^{\frac{1}{2}} & \Rightarrow & y^{\prime}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
y=\sqrt[3]{x}=x^{\frac{1}{3}} & \Rightarrow & y^{\prime}=\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3 \sqrt[3]{x^{2}}}
\end{array}
$$

LINEARITY OF DIFFERENTIATION

- The constant multiple rule

$$
y=k \cdot f(x) \quad(k \in \mathbb{R}) \quad \Rightarrow \quad y^{\prime}=k \cdot f^{\prime}(x)
$$

- The sum rule

$$
y=f(x)+g(x) \quad \Longrightarrow \quad y^{\prime}=f^{\prime}(x)+g^{\prime}(x)
$$

- Examples
- $y=2 x^{3}-5 x^{2}+3 x-2 \quad \Rightarrow \quad y^{\prime}=6 x^{2}-10 x+3$
- $y=3 \sqrt{x}-\frac{1}{\sqrt{x}}-\frac{2}{x}+\frac{1}{x^{2}}=3 x^{\frac{1}{2}}-x^{-\frac{1}{2}}-2 x^{-1}+x^{-2}$
$y^{\prime}=\frac{3}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}+2 x^{-2}-2 x^{-3}=\frac{3}{2 \sqrt{x}}-\frac{1}{2 x \sqrt{x}}+\frac{2}{x^{2}}-\frac{2}{x^{3}}$

Third lesson

CALCULATING DERIVATIVES (II)

THE DERIVATIVE OF AN EXPONENTIAL FUNCTION

- Exponential function

$$
y=a^{x} \quad(a>0 \wedge a \neq 1) \quad \Rightarrow \quad y^{\prime}=a^{x} \ln a
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h}=a^{x} \lim _{h \rightarrow 0} \frac{\left(a^{h}-1\right)}{h}=a^{x} \ln a$

- Special case

$$
y=e^{x} \quad \Rightarrow \quad y^{\prime}=e^{x}
$$

THE DERIVATIVE OF A LOGARITHMIC FUNCTION

- Logarithmic function

$$
y=\log _{a} x \quad(a>0 \wedge a \neq 1) \quad \Rightarrow \quad y^{\prime}=\frac{1}{x} \log _{a} e
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\log _{a}(x+h)-\log _{a} x}{h}=\lim _{h \rightarrow 0} \frac{\log _{a}\left(\frac{x+h}{x}\right)}{h}=\lim _{h \rightarrow 0} \frac{\log _{a}\left(1+\frac{h}{x}\right)}{h}=\lim _{h \rightarrow 0} \frac{1}{x} \frac{\log _{a}\left(1+\frac{h}{x}\right)}{\frac{h}{x}}=\frac{1}{x} \log _{a} e$

- Special case

$$
y=\ln x \quad \Rightarrow \quad y^{\prime}=\frac{1}{x}
$$

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

- Sinus function

$$
y=\sin x \quad \Rightarrow \quad y^{\prime}=\cos x
$$

Proof
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h}=$
$=\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h}=\lim _{h \rightarrow 0}\left(\sin x \frac{\cos h-1}{h}+\cos x \frac{\sin h}{h}\right)=\sin x \cdot 0+\cos x \cdot 1=\cos x$

- Cosinus function

$$
y=\cos x \quad y^{\prime}=-\sin x
$$

DERIVATIVES OF PRODUCTS AND QUOTIENTS

- The product rule

$$
y=f(x) \cdot g(x) \quad \Rightarrow \quad y^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

- Example $y=x^{2} \ln x \Rightarrow y^{\prime}=2 x \ln x+x^{2} \cdot \frac{1}{x}=2 x \ln x+x=x(2 \ln x+1)$
- The quotient rule

$$
y=\frac{f(x)}{g(x)} \quad \Rightarrow \quad y^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
$$

- Examples
- $y=\tan x=\frac{\sin x}{\cos x} \Rightarrow y^{\prime}=\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=1+\tan ^{2} x$
- $y=\cot x=\frac{\cos x}{\sin x} \Rightarrow y^{\prime}=\frac{-\sin x \cdot \sin x-\cos x \cdot \cos x}{\sin ^{2} x}=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}=-1-\cot ^{2} x$

THE DERIVATIVE OF A COMPOSITE FUNCTION

- The chain rule or «outside-inside» rule

$$
y=(f \circ g)(x)=f(g(x)) \quad \Rightarrow \quad y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

- Examples
- $y=\ln \sin x \quad \Rightarrow \quad y^{\prime}=\frac{1}{\sin x} \cdot \cos x=\cot x$
- $y=\cos ^{2} x=(\cos x)^{2} \Rightarrow y^{\prime}=2 \cos x(-\sin x)=-2 \sin x \cos x=-\sin 2 x$

Fourth lesson MORE ON DIFFERENTIABILITY

EQUATION OF THE TANGENT LINE

Suppose that f is
differentiable at x_{0}.
Then the equation of the tangent line to the graph of f at $P\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)
$$

EQUATION OF THE TANGENT LINE

Example

$y=\ln x$
$x_{0}=1$
$f\left(x_{0}\right)=f(1)=0$
$y^{\prime}=\frac{1}{x}$
$f^{\prime}(1)=1$
$t: y-0=1(x-1)$
$t: y=x-1$

NON-DIFFERENTIABLE FUNCTIONS

A function will not have a derivative at a point x_{0} where the slopes of the secant lines

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

fail to approach a limit as x approaches x_{0}.
The next figures illustrate three different instances where this occurs. For example, a function whose graph is otherwise smooth will fail to have a derivative at a point where the graph has ...

A CORNER,

where the one-sided derivatives exist, are finite but differ:

$$
f^{\prime}\left(x_{0}\right) \neq f_{+}^{\prime}\left(x_{0}\right) .
$$

Example 1

$$
\begin{aligned}
& f(x)=|x| \quad \text { at } \quad x_{0}=0 . \\
& f^{\prime}(0)=-1 \\
& f_{+}^{\prime}\left(x_{0}\right)=1
\end{aligned}
$$

$[-3,3]$ by $[-2,2]$

... A CORNER

Example 2

$$
f(x)=\left\{\begin{array}{l}
(x+1)^{2}, \text { for } x<0 \\
(x-1)^{2}, \text { for } x \geq 0
\end{array}\right.
$$

$$
\text { at } \quad x_{0}=0 \text {. }
$$

$$
f^{\prime} _(0)=-1
$$

$$
f_{+}^{\prime}\left(x_{0}\right)=1
$$

A CUSP,

where the one-sided derivatives exist and are infinite and of opposite sign:
either $f^{\prime}\left(x_{0}\right)=-\infty \wedge f^{\prime}\left(x_{0}\right)=+\infty$
or

$$
f^{\prime}\left(x_{0}\right)=+\infty \wedge f_{+}^{\prime}\left(x_{0}\right)=-\infty .
$$

Example

$$
\begin{aligned}
& f(x)=\sqrt[3]{x^{2}} \quad \text { at } x_{0}=0 . \\
& f^{\prime}\left(x_{0}\right)=-\infty \wedge f_{+}^{\prime}\left(x_{0}\right)=+\infty
\end{aligned}
$$

$[-3,3]$ by $[-2,2]$

A VERTICAL TANGENT,

where the one-sided derivatives exist and are infinite and of the same signs:
either $f^{\prime}{ }_{-}\left(x_{0}\right)=f^{\prime}{ }_{+}\left(x_{0}\right)=+\infty$
or

$$
f^{\prime}{ }_{-}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=-\infty .
$$

Example

$$
\begin{aligned}
& f(x)=\sqrt[3]{x} \text { at } x_{0}=0 . \\
& f^{\prime}\left(x_{0}\right)=f_{+}^{\prime}\left(x_{0}\right)=+\infty
\end{aligned}
$$

$[-3,3]$ by $[-2,2]$

DIFFERENTIABILITY IMPLIES CONTINUITY

Theorem

If f is differentiable at x_{0}, then f is continuous at x_{0}.

Proof

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}}\left[f(x)-f\left(x_{0}\right)\right]=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot\left(x-x_{0}\right)= \\
& =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot 0=0 .
\end{aligned}
$$

Therefore $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ and f is continuous at x_{0}.

CONTINUITY DOESN’T IMPLY DIFFERENTIABILITY

The converse of the previous theorem is false.
A continuous function might have a corner, a cusp or a vertical tangent line, and hence not be differentiable at a given point.
All the functions considered in the previous examples are continuous, but not differentiable at $x_{0}=0$.

$[-3,3]$ by $[-2,2]$

$[-3,3]$ by $[-2,2]$

$[-3,3]$ by $[-2,2]$

